147 research outputs found

    ADVANCED IMAGING AND ROBOTICS TECHNOLOGIES FOR MEDICAL APPLICATIONS

    Get PDF
    Due to the importance of surgery in the medical field, a large amount of research has been conducted in this area. Imaging and robotics technologies provide surgeons with the advanced eye and hand to perform their surgeries in a safer and more accurate manner. Recently medical images have been utilized in the operating room as well as in the diagnostic stage. If the image to patient registration is done with sufficient accuracy, medical images can be used as "a map" for guidance to the target lesion. However, the accuracy and reliability of the surgical navigation system should be sufficiently verified before applying it to the patient. Along with the development of medical imaging, various medical robots have also been developed. In particular, surgical robots have been researched in order to reach the goal of minimal invasiveness. The most important factors to consider are determining the demand, the strategy for their use in operating procedures, and how it aids patients. In addition to the above considerations, medical doctors and researchers should always think from the patient's point of view. In this article, the latest medical imaging and robotic technologies focusing on surgical applications are reviewed based upon the factors described in the above. © 2011 Copyright Taylor and Francis Group, LLC.1

    Simultaneous determination of position and mass in the cantilever sensor using transfer function method

    Get PDF
    We present the simultaneous measurement of mass and position of micro-beads attached to the cantilever-based mass sensors using the transfer function method. 10 ??m diameter micro-beads were placed on micro-cantilevers and the cantilevers were excited by lead-zirconate-titanate through low-pass filtered random voltages. The cantilever vibration was measured via a laser Doppler vibrometer before and after applying the beads. From the measured transfer function, the bead position was identified using its influence on the cantilever kinetic energy. The bead mass was then obtained by analyzing the wave propagation near the beads. The predicted position and mass agreed well with actual values.open0

    Determination of Fluid Density and Viscosity by Analyzing Flexural Wave Propagations on the Vibrating Micro-cantilever

    Get PDF
    The determination of fluid density and viscosity using most cantilever-based sensors is based on changes in resonant frequency and peak width. Here, we present a wave propagation analysis using piezoelectrically excited micro-cantilevers under distributed fluid loading. The standing wave shapes of microscale-thickness cantilevers partially immersed in liquids (water, 25% glycerol, and acetone), and nanoscale-thickness microfabricated cantilevers fully immersed in gases (air at three different pressures, carbon dioxide, and nitrogen) were investigated to identify the effects of fluid-structure interactions to thus determine the fluid properties. This measurement method was validated by comparing with the known fluid properties, which agreed well with the measurements. The relative differences for the liquids were less than 4.8% for the densities and 3.1% for the viscosities, and those for the gases were less than 6.7% for the densities and 7.3% for the viscosities, showing better agreements in liquids than in gases

    Simultaneous position and mass determination of a nanoscale-thickness cantilever sensor in viscous fluids

    Get PDF
    We report simultaneous determination of the mass and position of micro-beads attached to a nanoscale-thickness cantilever sensor by analyzing wave propagations along the cantilever while taking into account viscous and inertial loading due to a surrounding fluid. The fluid-structure interaction was identified by measuring the change in the wavenumber under different fluid conditions. The predicted positions and masses agreed with actual measurements. Even at large mass ratios (6%-21%) of the beads to the cantilever, this wave approach enabled accurate determination of the mass and position, demonstrating the potential for highly accurate cantilever sensing of particle-based bio-analytes such as bacteria. © 2015 AIP Publishing LLCopen0

    Physical collection and viability of airborne bacteria collected under electrostatic field with different sampling media and protocols towards rapid detection

    Get PDF
    Electrostatic samplers have been increasingly studied for sampling of viral and bacterial aerosols, and bioaerosol samplers are required to provide concentrated liquid samples with high physical collection and biological recovery, which would be critical for rapid detection. Here, the effects of sampling media and protocols on the physical collection and biological recovery of two airborne bacteria (Pseudomonas fluorescens and Micrococcus luteus) under electrostatic field were investigated using a personal electrostatic particle concentrator (EPC). Deionized (DI) water with/without sodium dodecyl sulfate (SDS) and phosphate buffered saline were tested as sampling media. A polystyrene container was mounted onto the collection electrode of the EPC for stable storage and vortexing after capture. Many bacterial cells were found to be deposited on the bottom surface of the container submerged in the media via electrophoresis, and among the tested sampling protocols, wet sampling with a container and subsequent vortexing offered the most bacteria in the collection suspension. Experiments with several sampling media showed that 0.001-0.01% SDS-DI water demonstrated the highest recovery rate in the EPC. These findings would be valuable in the field of sampling and subsequent rapid detection of bioaerosols

    Recent advancements in the measurement of pathogenic airborne viruses

    Get PDF
    Air-transmissible pathogenic viruses, such as influenza viruses and coronaviruses, are some of the most fatal strains and spread rapidly by air, necessitating quick and stable measurements from sample air volumes to prevent further spread of diseases and to take appropriate steps rapidly. Measurements of airborne viruses generally require their collection into liquids or onto solid surfaces, with subsequent hydrosolization and then analysis using the growth method, nucleic-acid-based techniques, or immunoassays. Measurements can also be performed in real time without sampling, where species-specific determination is generally disabled. In this review, we introduce some recent advancements in the measurement of pathogenic airborne viruses. Air sampling and measurement technologies for viral aerosols are reviewed, with special focus on the effects of air sampling on damage to the sampled viruses and their measurements. Measurement of pathogenic airborne viruses is an interdisciplinary research area that requires understanding of both aerosol technology and biotechnology to effectively address the issues. Hence, this review is expected to provide some useful guidelines regarding appropriate air sampling and virus detection methods for particular applications

    Navigation-assisted suture anchor insertion for arthroscopic rotator cuff repair

    Get PDF
    Background: Suture anchor placement for subscapularis repair is challenging. Determining the exact location and optimum angle relative to the subscapularis tendon direction is difficult because of the mismatch between a distorted arthroscopic view and the actual anatomy of the footprint. This study aimed to compare the reliability and reproducibility of the navigation-assisted anchoring technique with conventional arthroscopic anchor fixation. Methods: Arthroscopic shoulder models were tested by five surgeons. The conventional and navigation-assisted methods of suture anchoring in the subscapularis footprint on the humeral head were tested by each surgeon seven times. Angular results and anchor locations were measured and compared using the Wilcoxon signed rank test. Interobserver intraclass correlation coefficients (ICCs) were analyzed among the surgeons. Results: The mean angular errors of the targeted anchor fixation guide without and with navigation were 17° and 2° (p < 0.05), respectively, and the translational errors were 15 and 3 mm (p < 0.05), respectively. All participants showed a narrow range of anchor fixation angular and translational errors from the original target. Among the surgeons, the interobserver reliabilities of angular errors for ICCs of the navigation-assisted and conventional methods were 0.897 and 0.586, respectively, and the interobserver ICC reliabilities for translational error were 0.938 and 0.619, respectively. Conclusions: The navigation system may help surgeons be more aware of the surrounding anatomy and location, providing better guidance for anchor orientation, including footprint location and anchor angle. © 2019 The Author(s).1

    Dual Surgical Navigation Using Augmented and Virtual Environment Techniques

    Get PDF
    To obtain additional depth and visual information in endoscopic surgery, a dual surgical navigation system using virtual reality (VR) and augmented reality (AR) techniques complementarily was developed. A VR environment was constructed in the default 3-D view of the navigation software and an AR environment was developed as a plug-in module. The spatial relationships among the target organ, endoscope, and surgical tools were visualized, and the visual information superimposing invisible organs on the endoscopic images was supplied using the AR environment. Phantom experiments and preliminary clinical application showed promising results for surgical navigation. © Taylor & Francis Group, LLC.1

    Navigation-assisted anchor insertion in shoulder arthroscopy: a validity study

    Get PDF
    Background: This study aimed to compare conventional and navigation-assisted arthroscopic rotator cuff repair in terms of anchor screw insertion. Methods: The surgical performance of five operators while using the conventional and proposed navigation-assisted systems in a phantom surgical model and cadaveric shoulders were compared. The participating operators were divided into two groups, the expert group (n = 3) and the novice group (n = 2). In the phantom model, the experimental tasks included anchor insertion in the rotator cuff footprint and sutures retrieval. A motion analysis camera system was used to track the surgeons’ hand movements. The surgical performance metric included the total path length, number of movements, and surgical duration. In cadaveric experiments, the repeatability and reproducibility of the anchor insertion angle were compared among the three experts, and the feasibility of the navigation-assisted anchor insertion was validated. Results: No significant differences in the total path length, number of movements, and time taken were found between the conventional and proposed systems in the phantom model. In cadaveric experiments, however, the clustering of the anchor insertion angle indicated that the proposed system enabled both novice and expert operators to reproducibly insert the anchor with an angle close to the predetermined target angle, resulting in an angle error of < 2° (P = 0.0002). Conclusion: The proposed navigation-assisted system improved the surgical performance from a novice level to an expert level. All the experts achieved high repeatability and reproducibility for anchor insertion. The navigation-assisted system may help surgeons, including those who are inexperienced, easily familiarize themselves to of suture anchors insertion in the right direction by providing better guidance for anchor orientation. Level of evidence: A retrospective study (level 2). © 2020, The Author(s).1

    Кераміка «terra sigillata» з с. Зимне на Волині

    Get PDF
    Стаття присвячена публікації чотирьох керамічних посудин типу «terra sigillata», знайдених на дні р. Луги у с. Зимне Володимир-Волинського району Волинської області. Попередній аналіз цих знахідок дозволяє віднести їх до Понтійського центру виробництва такого посуду. Вірогідним шляхом потрапляння цієї колекції на Волинь була готська експансія у Північне Причорномор’я
    corecore